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Pyrrole Reduction: The Zinc/Acid Reduction of Octahydrocarbazoles
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The stereo- and regiochemical course of the zinc/acid reduction of 1,2,3,4,5,6,7,8,-octahydrocarbazole is
strongly influenced by experimental conditions and by the nature of the N-substituent.
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Principal reviews of pyrrole chemistry [2-4] report that
trans-3-pyrrolines are the major products from metal/acid
reduction of 2,5-dimethyl- [5] and 1,2,5-trimethylpyrrole [6]
and this might be regarded as general. In the course of
some synthetic work involving the 1,2,3,4,5,6,7,8- octahy-
drocarbazoles 1a, 1b and le¢ [7], we found that both the
regio- and stereoselectivity of the pyrrole reduction by
zinc and acid were highly dependent upon the reaction
conditions, especially the acidity of the medium, and the
nature of the N-substituent. Any of the cis- or trans-3-
pyrrolines 3 or 4 [8] or the 1-pyrroline 2 [8] (from 1a) could
be made the dominant product.
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The standard procedure for the reduction was the con-
trolled addition of acid to a chilled, vigorously stirred mix-
ture of the pyrrole and zinc dust in a suitable solvent.
When carboxylic acids were used as the proton source, the
zinc could be added gradually to a solution of the pyrrole
in the carboxylic acid (*‘inverse procedure”). The use of
zinc-copper couple gave essentially the same product mix-
ture as the zinc dust under the same conditions but did
have the advantage of a more efficient use of the zinc dust
so that there was less zinc ion to dispose of during isola-
tion of the product amines. 3-Pyrrolines are not further
reduced under these conditions, so that all the pyrrolidine
derives from 1- or 2-pyrroline.

The reduction products were somewhat unstable and
tended to decompose upon chromatography. The product
mixtures, therefore, had to be analysed by '*C nmr spec-
troscopy using long recycle times and nOe suppresion.
The 1-pyrroline 2 was isolated by extraction at controlled
pH from solutions of the more basic 3-pyrrolines 3a and 4a
and the pyrrolidine 5a [9]. (The stereochemistry of the
1-pyrroline 2 is not known). One very selective reduction
(Table 1, entry 6) afforded a single pure (by nmr)
3-pyrroline which was shown to be the trans isomer 4a by

resolution vig its tartrate salts [10]. (The cis isomer 3a is a
meso compound). Acetylation and methylation provided
authentic 4b and 4¢ which permitted analysis of the spec-
tra of the product mixtures from 1b and 1c [11]. A selec-
tion of the results is presented in Table 1 [12].

A notable feature of the results was that the trans-3-
pyrroline was not always the major stereoisomer, and that
in the case of the N-methyloctahydrocarbazole (l¢) it was
the cis stereoisomer that predominated, often markedly so,
under all conditions that were tried. This latter result is
opposite to the stereoselectivity reported for the zinc/acid
reduction of 1,2,5-trimethylpyrrole [6].

An unexpected result was the formation of a hydrodimer
6 in the reduction of 1b [13]. This product erystallized
from ether solutions of the product mixtures from
zinc/acetic acid reductions of 1b, but was a mixture, and
preparative chromatography on silica resulted in a less
homogeneous product. Once recognized, hydrodimeriza-
tion was easily minimized by using lower concentrations of
1b: the problem was not encountered with the pyrroles la
and le.

The reductions gave mixtures whose compositions were
very sensitive to even small changes in reduction condi-
tions, The variations in product ratios were marked for the
pyrroles 1a and 1b, from which both cis- and trans-3-pyr-
rolines could predominate. The reduction of the free pyr-
role 1a could also be directed towards the 1-pyrroline 2.
Such control is preparatively useful as it makes several
pyrrolines accessible in fair yields from a single pyrrole.
Thus the l-pyrroline 2 can be obtained in greater than
50% yield (entries 2 and 6) and the trans-3-pyrroline 4a is
available completely free of the cis isomer in over 40%
yield (entry 6): both without recourse to chromatography.

The general observation was made that reduction of
pyrrole 1a using hydrogen chloride in ethanol could be
directed towards the trans-3-pyrroline 4a with increasing
regio- and stereoselectivity by decreasing the rate of addi-
tion of acid, increasing the volume of solvent, and reduc-
ing the temperature. Thus under the conditions of entry 3
a yield of 4a of over 80% was obtained, although a small
amount of the cis isomer 3a was still also formed. Reduc-
tions of la using formic acid were always strongly stereo-
selective towards the trans isomer, but the regioselectivity
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Table 1

Reduction of Octahydrocarbazoles [a]

Substrate Solvent Acid [b]
(initial [pyrrole])
1 1a MeOH [0.40] A
2 " EtOH [0.67] Ac]
3 " EtOH [0.40} B
4 " Et,0 [¢] [0.2] B
5 " EtOH [0.40] C in EtOH
(2:1)
6 " HCO.H [d] [1.0] ‘‘inverse’’
7 1b MeOH [0.25] A
8 " EtOH [0.50] C
9 " HOAC/H,0 [f] ““inverse’’ [g]
(20:1) [0.95)
10 1c MeOH [0.80] A
11 " EtOH [0.80] B
12 " EtOH [0.40) C [i]

25
50

6.

20

Products (%)

3 4 5 Other
25 49 0
26 17 4
10 83 0
5 51 33 2
3.5 76 0.5
0 35 0
= 10 85 trace 5 [e]
= 13 70 14 2 [e]
= 54 13 16 12 fe]
S 64 i1 3.5 0 [h]
= 59 31 1 8.5 [h}
= 26 4 0 68 [h]

[a] Except where noted otherwise, all reductions were conducted at 0-10°, and the additions of acid or zinc were spread over 100 to 300
minutes. [b] A. Concentrated aqueous hydrochloric acid; B. Saturated ethanolic hydrogen chloride; C. 98% formic acid. [c] Acid added over 8

minutes, [d] At room temperature. [e] 6: Accurate M. [f] At reflux.

90 minutes.

was much reduced. Reductions of la using hydrogen
chloride in ether, on the other hand, favoured the cis-3-
pyrroline 3a over the trans isomer.
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